

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/31

Paper 3 Theory (Core) May/June 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1	(a)	A list of s	ymbols	and	formulae	is	shown.
---	-----	-------------	--------	-----	----------	----	--------

A l³⁺
CH₄
CO₂
Fe³⁺
N₂
NO₂
O₂
O²⁻
Zn²⁺

Answer the following questions about these symbols and formulae. Each symbol or formula may be used once, more than once or not at all.

Which symbol or formula represents:

(i)	a compound which contributes to acid rain	
		[1]
(ii)	a compound which is a product of respiration	
		[1]
(iii)	a gas which forms 21% of clean dry air	
		[1]
(iv)	an ion which forms a red-brown precipitate when added to aqueous sodium hydroxide	!
		[1]
(v)	an ion formed when an atom gains electrons?	
		[1]

(b) Complete the table to show the relative charge and approximate relative mass of a proton, a neutron and an electron.

type of particle	relative charge	approximate relative mass
proton	+1	
neutron		
electron		1 2000

ΓQ	1
ı	1
L -	

(c)	Deduce the number	of electrons and	I neutrons in an	atom of the	isotope of iron shown.
-----	-------------------	------------------	------------------	-------------	------------------------

58 26	⁸ ₆ Fe
number of electrons	
number of neutrons	
	[2

[Total: 10]

[2]

2 A solution is obtained by filtering a mixture of soil and water. The table shows the mass of some of the ions in 1000 cm³ of this solution.

name of ion	formula of ion	mass of ion in 1000 cm ³ of soil solution/mg	
aluminium	Al ³⁺	0.1	
	NH ₄ ⁺	35.0	
calcium	Ca ²⁺	1.3	
iron(II)	Fe ²⁺	47.0	
magnesium	Mg ²⁺	0.2	
	NO ₃ -	23.0	
phosphate	PO ₄ ³⁻	4.2	
potassium	K ⁺	99.0	
sulfate	SO ₄ ²⁻	7.5	

(a)	Answer these questions using the information in the table.	

	(1)	which negative ion has the lowest concentration?	
		[1]
	(ii)	State the name of the NO ₃ ⁻ ion.	
		[1]
(i	iii)	Calculate the mass of phosphate ions in 250 cm³ of this solution.	
		mass = mg [1]
(i	iv)	Name the compound that contains NH_4^+ ions and PO_4^{3-} ions.	
		[1]
(b)	Des	scribe a test for potassium ions.	
	test		
	ohe	orvations	

(c)	The names	and formulae	for some	compounds	are shown.
-----	-----------	--------------	----------	-----------	------------

aluminium phosphate, $AlPO_4$ calcium phosphate, $Ca_3(PO_4)_2$ potassium phosphate, K_3PO_4

Deduce the formula for magnesium phosphate.	
	[1]
	[Total: 7]

- 3 Many compounds and elements have important uses.
 - (a) Complete the table to show the name, formula and use of each compound and element.

name of compound or element	number of atoms in the formula	formula	use
chlorine	chlorine = 2	Cl ₂	
	carbon = 1 hydrogen = 4	CH ₄	
calcium carbonate	calcium = 1 carbon = 1 oxygen = 3		

[5]

(b) The table shows the minimum temperature for the reduction of four metal oxides by carbon.

metal oxide	minimum temperature for reduction by carbon	
calcium oxide	not reduced at 1530°C	
iron(II) oxide	reduced at 650°C	
titanium oxide	reduced at 1530°C	
zinc oxide	reduced at 720 °C	

Put the four metals in order of their reactivity. Put the least reactive metal first.

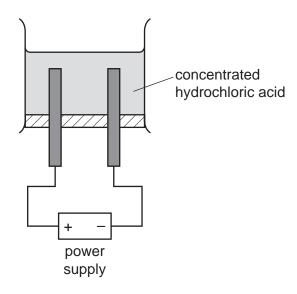
least reactive —			-	most reactive

[2]

C)	Anr	nydrous copper(II) sulfate, CuSO ₄ , is used to test for water.	
	(i)	Describe the change in colour when water is added to anhydrous copper(II) sulfate.	
		from to	 [2]
	(ii)	This reaction is reversible.	
		Describe how this reaction can be reversed.	
			[1]
((iii)	State one use of water in industry.	
			[1]
		[Total:	11]

[2]

4 The properties of five alkenes at room temperature are shown in the table.


alkene	number of carbon atoms in a molecule	state at room temperature	density in g/cm³	boiling point
ethene	2	gas	0.0012	-104
propene	3	gas	0.0018	-47
butene	4	gas	0.0024	
pentene	5	liquid	0.64	30
hexene	6	liquid	0.67	63

		110/10/10		i iiqaia	0.07						
(a)	Ans	swer these questions using only the information in the table.									
	(i)	Predict the boiling point of butene.									
		°C [1]									
	(ii)	Describe the general trend in the density of the alkenes.									
							[1				
((iii)		why the densities on the contraction where the contraction with the cont	of the first three al	kenes are much	lower than the o	lensity o				
							[1				
(b)	(i)	Complete	the chemical equa	ation for the comple	ete combustion o	f propene.					
			$2C_3H_6$ -	$+ \dots O_2 \rightarrow 6CO_2$	+ 6H ₂ O		[1				
	(ii)	Describe a test for carbon dioxide.									
		test									
		observation	ons								
							[2				
((iii)	Universal	indicator is added	to an aqueous sol	ution of carbon d	ioxide.					
		What colour change is observed?									
		from green to									
		• Give	a reason for your a	answer.							

(c)	Wh	When propene undergoes incomplete combustion, carbon monoxide is formed.					
	(i)	What condition is needed for incomplete combustion?					
			[1]				
	(ii)	Give one adverse effect of carbon monoxide on health.					
			[1]				
		[Total:	10]				

5 When concentrated hydrochloric acid is electrolysed, gases are produced at the electrodes.

The incomplete apparatus is shown.

- (a) (i) Complete the diagram by:
 - labelling the anode and cathode
 - showing how the gases are collected.

[2]

(ii) Predict the products of this electrolysis at the:

positive electrode	
negative electrode.	
3	[2]

(iii) Graphite (carbon) electrodes are used in this electrolysis.

Suggest **one** other element that can be used as an electrode and give a reason, other than that it can conduct electricity.

element	
reason	
	[2]

(b) Hydrogen chloride is produced when chlorine reacts with hydrogen.

Complete the chemical equation for this reaction.

$$Cl_2 + \dots \rightarrow \dots HCl$$
 [2]

(c)	Aqueous	chlorine	reacts with	aqueous	sodium	iodide
-----	---------	----------	-------------	---------	--------	--------

$$Cl_2$$
 + 2NaI \rightarrow I₂ + 2NaCl

(i)	How does this reaction show that chlorine is more reactive than iodine?	
		F 4 3
		[1]
(ii)	What colour is iodine in aqueous solution?	
		[1]
	[Total:	10]

6	Acids	have	characteristic	properties

(a) Hydrochloric acid reacts with magnesium.

Name the products of this reaction and give the observations.

(b) The rate of reaction of iron(II) carbonate with hydrochloric acid can be determined by measuring the time taken to produce 20 cm³ of carbon dioxide.

A student measured the time taken to produce 20 cm³ of carbon dioxide at three different temperatures.

In each experiment the student used:

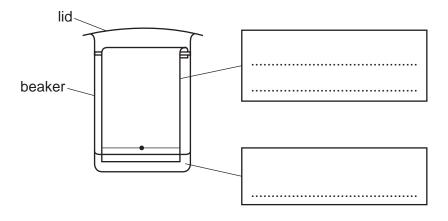
- 1 g of large pieces of iron(II) carbonate
- dilute hydrochloric acid of the same concentration and volume.

The results are shown in the table.

temperature /°C	time /s
20	38
25	30
30	19

(i)	Use the information temperature.	in	the	table	to	describe	how	the	rate	of	reaction	changes	with
													[1

	(ii)		perature.	effect of	each of the	ne followin	g on the ra	ite of this	reaction	at constant
		•	Smaller p	ieces of ir	on(II) carb	onate are ι	ısed.			
		All	other cond	itions stay	the same.					
		•	The conc	entration o	of hydrochl	oric acid is	decreased.			
		All	other cond	itions stay	the same.					
										[2]
(c)	The	e rea	ction of iro	n(II) carb	onate with	hydrochlori	c acid is exc	othermic.		
	Wh	at is	meant by	the term e	exothermic	?				
										[1]
(d)	Rus	st co	ntains com	pounds o	f iron.					
	Sta	te tw	o conditio	ns neede	d for iron to	rust.				
					•••••					[2]
(e)	Iror	n and	l magnesiu	ım are bo	th used in a	alloys.				
	Wh	ich c	ne of thes	e diagram	ns, A , B , C	or D , best	represents a	an alloy?		
			Α		В		С		D	
		Q		4						
				•••••	•••••					[1]
										[Total: 11]


7 The structure of myrcene is shown.

(a)	Deduce the formula of my	ricerie lo snow the nui	Tibel of atoms of carbon	and nyurogen.
				_

(b) Myrcene is found in some plants.

The coloured compounds in plant leaves can be separated by chromatography.

Complete the diagram by putting the correct labels in the boxes.

[2]

(c) Myrcene is an unsaturated hydrocarbon.

Describe a chemical test to distinguish between a saturated and an unsaturated hydrocarbon.

test

observations with saturated hydrocarbon

observations with unsaturated hydrocarbon

[3]

(d) Butane is a saturated hydrocarbon.

To which homologous series does butane belong?

Draw a circle around the correct answer.

alcohol alkane alkene carboxylic acid [1]

(e) Large hydrocarbons can be cracked to form smaller hydrocarbons.

Complete the chemical equation for cracking tridecane, $C_{13}H_{28}$, to form an alkene and one other hydrocarbon.

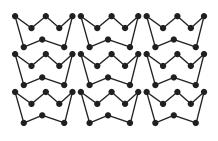
$$C_{13}H_{28} \rightarrow C_3H_6 + \dots$$
 [1]

(f) Ethene is an alkene.

Draw the structure of ethene showing all of the atoms and all of the bonds.

[1]

(g) Complete the sentences about the separation of hydrocarbons from petroleum using words from the list.


[Total: 12]

8 The diagram shows part of the structures of sodium bromide and sulfur.

Na ⁺	Br-	Na ⁺	Br-	
Br-	Na ⁺	Br⁻	Na ⁺	
(Na ⁺)	Br ⁻	(Na ⁺)	Br ⁻	
(Br⁻	(Na⁺)	Br⁻ ✓	(Na ⁺)	

sodium bromide

sulfur

- (a) Describe both sodium bromide and sulfur in terms of:
 - bonding

 electrical conductivity

 solubility in water.

 [5]
- (b) Sulfur is an element.

What is meant by the term *element*?

c)	Soc	lium can be extracted from sodium bromide by el	ectrolysis.
	Soc	dium is a metal in Group I of the Periodic Table.	
	(i)	Describe one chemical property of sodium.	
			[1]
	(ii)	Which two of these statements about the physic	al properties of sodium are correct?
		Tick two boxes.	
		Sodium is very hard.	
		Sodium has a high density.	
		Sodium conducts electricity.	
		Sodium is malleable.	
		Sodium does not conduct heat.	
			[2]
			[Total: 9]

18

BLANK PAGE

19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	=	0	שַׁ שַּ)	Φ	nc C	~	_	on C	23		ton +	4	Φ	e –	.0	_	uo .			
	=	r I	helium 4	7	Z	7 Je	7	⋖	arg 4(3		kryp 8	2	×	xen 13	8	2	rad			
	₹			6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	Αt	astatine -			
	5			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium	116	_	livermorium -
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	≥			9	ပ	carbon 12	14	:S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	Fl	flerovium
	≡			5	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	18	11	thallium 204			
										30	Zu	zinc 65	48	В	cadmium 112	80	Hg	mercury 201	112	S	copernicium
										59	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium
Group										28	Ë	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
Group										27	ဝိ	cobalt 59	45	R	rhodium 103	11	Ľ	iridium 192	109	¥	meitnerium -
		- ⊐	hydrogen 1							26	Ь	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium
				J						25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	В	bohrium
					ГО	ss				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	14	q	niobium 93	73	<u>n</u>	tantalum 181	105	op O	dubnium -
				ğ	ator	relat				22	i=	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	፟ጟ	rutherfordium -
							J			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=	•		4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
	_	•		3	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	Ē.	francium -

Lu Lu	lutetium 175	103	ב	lawrendum -
oz AY	ytterbium 173	102	8	nobelium –
ee Tm	thulium 169	101	Md	mendelevium –
₈₈ <u>п</u>	erbium 167	100	Fm	fermium -
67 Ho	holmium 165	66	Es	einsteinium –
°6 Dy	dysprosium 163	86	ర	californium -
e5 Tb	terbium 159	26	Æ	berkelium -
Gd Gd	gadolinium 157	96	Cm	curium
e3 Eu	europium 152	92	Am	americium -
62 Sm	samarium 150	94	Pu	plutoni um —
e1 Pm	promethium —	93	d N	neptunium -
°° PN	neodymium 144	92	\supset	uranium 238
59 P	praseodymium 141	91	Ра	protactinium 231
Ce Ce	cerium 140	06	드	thorium 232
57 La	lanthanum 139	88	Ac	actinium

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).